i L.“

“Terraform
Projects

Top 5 Terraform Projects to Master Cloud Infrastructure
Automation

20

. x.Devops
\:O Shac www.devopsshack.com

((- DeVO S www.devopsshack.com
. 4 ShQC O office@devopsshack.com

Click here for DevSecOps & Cloud DevOps Course

DevOps Shack
Top 5 Terraform Projects to Master Cloud
Infrastructure Automation

Table of Contents
Project 1: Deploy a High Availability (HA) Web Application on AWS
1. Overview of the Project
2. Implementation Steps
o Set Up Terraform
o CreateaVPC
o Create Public and Private Subnets
o Set Up Internet Gateway and Route Table
o Launch EC2 Instances
o Configure Application Load Balancer
o Set Up Auto-Scaling Group
o Apply Terraform Configuration

3. Outcome

Project 2: Deploy a Secure Multi-Tier Web Application on AWS
1. Overview of the Project
2. Implementation Steps
o Set Up Terraform
o CreateaVPC
o Create Public, Application, and Database Subnets

o Add Internet Gateway and Route Tables

http://www.devopsshack.com/

((- DeVO S www.devopsshack.com

)Shac

O office@devopsshack.com

o

o

o

o

Configure Security Groups for Tiers
Launch EC2 Instances for Web, Application, and Database Tiers
Set Up a Bastion Host for Secure Access

Apply Terraform Configuration

3. Outcome

Project 3: Automate Kubernetes Cluster Deployment on AWS Using Terraform

1. Overview of the Project

2. Implementation Steps

o

@)

o

@)

Set Up Terraform

Create a VPC

Create Public and Private Subnets

Deploy an EKS Cluster Using Terraform Modules
Set Up IAM Roles and Policies for EKS

Configure kubectl to Connect to the EKS Cluster
Deploy a Sample Application on Kubernetes

Apply Terraform Configuration

3. Outcome

Project 4: Automate the Deployment of a Complete CI/CD Pipeline on AWS

1. Overview of the Project

2. Implementation Steps

o

o

Set Up Terraform
Create an S3 Bucket for Hosting
Create a CodeCommit Repository for Source Code

Set Up a CodeBuild Project for Build Automation

((- DeVO S www.devopsshack.com

)Shac

O office@devopsshack.com

o

o

o

o

Configure IAM Roles for CodeBuild and CodePipeline
Create a Fully Automated CodePipeline
Apply Terraform Configuration

Test the CI/CD Pipeline

3. Outcome

Project 5: Automate the Deployment of a Serverless Application Using AWS

Lambda

1. Overview of the Project

2. Implementation Steps

o

o

o

o

Set Up Terraform

Create an S3 Bucket for Lambda Deployment Package
Create a DynamoDB Table for Data Storage

Define and Deploy the Lambda Function

Set Up IAM Roles and Policies for Lambda

Configure APl Gateway to Expose Lambda as a REST API
Apply Terraform Configuration

Test the Serverless Application

3. Outcome

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

Introduction

Terraform, developed by HashiCorp, is one of the most powerful and widely
used tools in the world of Infrastructure as Code (laC). It allows engineers,
developers, and cloud architects to define and provision infrastructure
resources in a consistent, repeatable, and automated manner. With Terraform,
infrastructure management becomes simpler, scalable, and free from the
pitfalls of manual configuration, making it a cornerstone for cloud automation
and DevOps practices.

In today’s dynamic cloud-driven environment, mastering Terraform has become
a must-have skill for professionals. The ability to write declarative configuration
files and manage infrastructure across major cloud providers like AWS, Azure,
and Google Cloud is invaluable for anyone aiming to enhance their expertise in
cloud computing and DevOps.

This guide introduces five practical and real-world projects that showcase
Terraform's capabilities and highlight how it can be used to automate different
aspects of cloud infrastructure. Each project has been carefully designed to
help you gain hands-on experience, from deploying high-availability web
applications to setting up CI/CD pipelines and building serverless applications.
By working through these projects, you'll learn how to:

« Deploy secure, scalable, and fault-tolerant web applications.

« Automate Kubernetes cluster provisioning and management.

« Build and automate a complete CI/CD pipeline.

« Leverage serverless technologies like AWS Lambda and DynamoDB.
« Integrate infrastructure automation seamlessly into your workflow.

Whether you are a beginner looking to kickstart your journey in cloud
automation or an experienced professional wanting to deepen your expertise,
this document serves as a practical, hands-on resource. Each project comes
with detailed implementation steps, helping you understand the core concepts
while applying them to real-world scenarios. So, let’s dive into the world of
Terraform and explore how it can transform the way you manage and automate
your infrastructure!

((- DeVO S www.devopsshack.com
. 4 ShQC O office@devopsshack.com

Project 1: Deploy a High Availability (HA) Web Application
on AWS

This project demonstrates how to deploy a highly available web application on
AWS using Terraform. The infrastructure includes a Virtual Private Cloud (VPC),
subnets, an internet gateway, a route table, EC2 instances, an application load

balancer (ALB), and an auto-scaling group. The goal is to ensure fault tolerance
and scalability for the web application.

Implementation Steps
Step 1: Install and Configure Terraform

1. Install Terraform: Download Terraform from the official website and
install it on your local machine.

2. Set up AWS CLI: Configure the AWS CLI with your credentials using the
following command:

aws configure

Provide your AWS Access Key, Secret Key, default region (e.g., us-east-1), and
default output format.

3. Create a Working Directory: Create a folder for your project, e.g.,
terraform-ha-web-app.

Step 2: Initialize Terraform Project

1. Inside the project folder, create a file named main.tf and add the AWS
provider configuration:

provider "aws" {
region = "us-east-1"
}

2. Run the following command to initialize Terraform and download the
AWS provider plugin:

terraform init

Step 3: Create a VPC

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

A Virtual Private Cloud (VPC) isolates your resources and provides networking
infrastructure.

1. Define a VPCin a new file called vpc.tf:

resource "aws_vpc" "main"
cidr_block = "10.0.0.0/16"
tags = {

Name = "terraform-vpc"

}

}
2. This configuration creates a VPC with the CIDR block 10.0.0.0/16.

Step 4: Create Public and Private Subnets

Subnets divide your VPC into smaller networks. Public subnets allow access to
the internet, while private subnets do not.

1. Add the subnet configurations to vpc.tf:

resource "aws_subnet" "public" {
vpc_id =aws_vpc.main.id
cidr_block ="10.0.1.0/24"
map_public_ip_on_launch = true
availability _zone = "us-east-13"
tags = {

Name = "public-subnet"

}
}

resource "aws_subnet" "private" {
vpc_id =aws_vpc.main.id

cidr_block ="10.0.2.0/24"

DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

availability_zone = "us-east-1b"
tags = {
Name = "private-subnet"
}
}

2. The public subnet is configured to assign public IPs to instances
automatically.

Step 5: Add an Internet Gateway and Route Table

An internet gateway allows internet traffic to flow to resources in the public
subnet.

1. Invpc.tf, add the following resources:

resource "aws_internet_gateway" "main" {
vpc_id = aws_vpc.main.id
tags = {
Name = "terraform-igw"
}
}
resource "aws_route_table" "public" {

vpc_id = aws_vpc.main.id
route {
cidr_block ="0.0.0.0/0"

gateway_id = aws_internet_gateway.main.id

}
}

resource "aws_route_table_association" "public" {

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

subnet_id =aws_subnet.public.id
route_table_id = aws_route_table.public.id

}

2. This configuration sets up internet access for resources in the public
subnet.

Step 6: Launch EC2 Instances
Create web server instances to host your application.
1. Create a new file ec2.tf and define an EC2 instance:

resource "aws_instance" "web" {

ami = "ami-0c55b159cbfafelf0" # Amazon Linux 2 AMI
instance_type = "t2.micro"

subnet_id =aws_subnet.public.id

key name = "your-key-pair"

tags = {

Name = "web-server"

2. Ensure you have an existing key pair in your AWS account for SSH access.
Step 7: Set Up an Application Load Balancer

An ALB distributes incoming traffic across multiple instances for high
availability.

1. Create a new file alb.tf and define the ALB:
resource "aws_Ib" "app" {
name = "terraform-alb"
internal = false

load_balancer_type = "application"

6‘ DeVOES www.devopsshack.com
- _) ShQC office@devopsshack.com

security_groups = [aws_security _group.alb_sg.id]

subnets = [aws_subnet.public.id]

tags = {

Name = "terraform-alb"

}

}

resource "aws_|b_target _group" "web_tg" {
name = "web-target-group"

port =80

protocol = "HTTP"

vpc_id =aws_vpc.main.id

resource "aws_lb_listener" "web _listener" {
load_balancer_arn = aws_lb.app.arn

port =80

protocol ="HTTP"

default_action {

type = "forward"

target_group_arn =aws_lb_target group.web_tg.arn

}

}
Step 8: Configure Auto-Scaling

Set up an auto-scaling group to ensure the application scales based on
demand.

10

DeVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

1. In autoscaling.tf, add the following:
resource "aws_launch_configuration" "web" {
name = "web-Ic"
image_id ="ami-0c55b159cbfafelf0"
instance_type = "t2.micro"

key name ="your-key-pair"

lifecycle {
create_before_destroy = true
}
}

resource "aws_autoscaling_group" "web" {
launch_configuration = aws_launch_configuration.web.id
min_size =1
max_size =3
desired capacity =2

vpc_zone_identifier = [aws_subnet.public.id]

tag {
key ="Name"
value = "web-instance"

propagate_at_launch = true
}
}

2. This configuration ensures the application can handle varying traffic
loads.

11

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

Step 9: Apply the Terraform Configuration
1. Initialize Terraform again:
terraform init
2. Validate the configuration to ensure there are no syntax errors:
terraform validate
3. Preview the infrastructure changes:
terraform plan
4. Deploy the infrastructure:
terraform apply

5. Confirm the deployment when prompted.

Outcome
+ Infrastructure Components:
o A VPC with public and private subnets.
o An internet gateway for public subnet access.
o EC2instances running in an auto-scaling group.
o An application load balancer routing traffic to the instances.
e Access:
o The web application is accessible via the ALB's DNS name.

o Trafficis distributed across instances to ensure high availability.

12

((- Devo S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

Project 2: Deploy a Secure Multi-Tier Web Application
on AWS

This project focuses on deploying a secure multi-tier web application
architecture on AWS. The architecture consists of a public-facing web tier, an
internal application tier, and a database tier hosted in private subnets. A
bastion host is used for secure access to private resources.

Implementation Steps
Step 1: Set Up Terraform
1. Install Terraform on your local machine.
2. Create a directory for your project, e.g., terraform-multi-tier-app.
Step 2: Define the AWS Provider
1. Create a main.tf file and configure the AWS provider:
provider "aws" {
region = "us-east-1"
}
2. Run the initialization command:

terraform init

Step 3: Create a VPC
A Virtual Private Cloud (VPC) provides isolated networking for your application.
1. Invpc.tf, define the VPC:
resource "aws_vpc" "main" {
cidr_block ="10.0.0.0/16"
tags = {
Name = "multi-tier-vpc"

}

13

DGVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

Step 4: Create Subnets
1. Add public and private subnets for each tier in vpc.tf:

resource "aws_subnet" "public" {
vpc_id =aws_vpc.main.id
cidr_block ="10.0.1.0/24"
map_public_ip_on_launch = true
availability _zone = "us-east-13"

tags = {

Name = "public-subnet"

}

}

resource "aws_subnet" "app" {
vpc_id =aws_vpc.main.id

cidr_block ="10.0.2.0/24"
availability_zone = "us-east-1b"
tags = {
Name = "app-subnet"
}
}

resource "aws_subnet" "db" {
vpc_id =aws_vpc.main.id

cidr_block = "10.0.3.0/24"

14

€ DeVOES www.devopsshack.com
- J ShQC office@devopsshack.com

availability _zone = "us-east-1c
tags = {

Name = "db-subnet"

Step 5: Add an Internet Gateway
An internet gateway allows access to the public-facing web tier.

1. Invpc.tf, add the gateway and route table:

resource "aws_internet_gateway" "main" {
vpc_id =aws_vpc.main.id
tags = {
Name = "multi-tier-igw"
}
}
resource "aws_route_table" "public" {

vpc_id =aws_vpc.main.id
route {
cidr_block ="0.0.0.0/0"

gateway_id = aws_internet_gateway.main.id

}
}

resource "aws_route_table_association" "public" {

subnet_id =aws_subnet.public.id

15

€ DeVOES www.devopsshack.com
- J ShQC office@devopsshack.com

route_table_id = aws_route_table.public.id

}

Step 6: Set Up Security Groups
Define security groups for each tier to control access.
1. Create a security_groups.tf file:

resource "aws_security _group" "web_sg" {
vpc_id = aws_vpc.main.id
ingress {

from_port =80

to port =80

protocol ="tcp"

cidr_blocks =["0.0.0.0/0"]
}

egress {

from _port =0
to port =0
protocol ="-1"

cidr_blocks =["0.0.0.0/0"]
}

tags = {
Name = "web-sg"
}
}

16

6\ Devo S www.devopsshack.com
.O ShQC @ office@devopsshack.com

resource "aws_security_group" "app_sg" {
vpc_id = aws_vpc.main.id

ingress {

from_port =8080

to_port =8080

protocol ="tcp"

security_groups = [aws_security_group.web_sg.id]

}

egress {

from _port =0
to port =0
protocol ="-1"

cidr_blocks =["0.0.0.0/0"]
}

tags = {
Name = "app-sg"
}
}

resource "aws_security_group" "db_sg" {
vpc_id = aws_vpc.main.id
ingress {

from_port =3306

17

6‘ DeVOES www.devopsshack.com
- ._) ShQC office@devopsshack.com

to_port =3306
protocol ="tcp"
security_groups = [aws_security _group.app_sg.id]

}

egress {

from _port =0
to_port =0
protocol ="-1"

cidr_blocks =["0.0.0.0/0"]

}
tags = {

Name = "db-sg"
}

}

Step 7: Launch EC2 Instances
Create instances for each tier: web, app, and database.
1. Add the following to instances.tf:
resource "aws_instance" "web" {
ami = "ami-0c55b159cbfafelf0"
instance_type = "t2.micro"
subnet_id =aws_subnet.public.id
security_groups = [aws_security_group.web_sg.name]

key name ="your-key-pair"

18

6\ Devo S www.devopsshack.com
.O ShQC @ office@devopsshack.com

tags = {

Name = "web-instance"

}
}
resource "aws_instance" "app" {
ami = "ami-0c55b159cbfafelf0"

instance_type = "t2.micro"
subnet_id =aws_subnet.app.id
security_groups = [aws_security_group.app_sg.name]
key name ="your-key-pair"
tags = {
Name = "app-instance"
}
}

resource "aws_instance" "db" {
ami = "ami-0c55b159cbfafel1f0"
instance_type = "t2.micro"
subnet_id =aws_subnet.db.id
security_groups = [aws_security_group.db_sg.name]
key name ="your-key-pair"
tags = {

Name = "db-instance"

19

DeVO ES www.devopsshack.com
- _) ShQC office@devopsshack.com

Step 8: Configure Bastion Host
Secure access to private instances using a bastion host.
1. Add a bastion instance to instances.tf:
resource "aws_instance" "bastion" {
ami = "ami-0c55b159cbfafelf0"
instance_type = "t2.micro"
subnet_id =aws_subnet.public.id
key_ name ="your-key-pair"
tags = {

Name = "bastion-host"

Step 9: Apply Terraform Configuration
1. Validate the configuration:
terraform validate
2. Preview the changes:
terraform plan
3. Apply the configuration:
terraform apply

4. Confirm the deployment when prompted.

Outcome
o Infrastructure Components:

o A VPC with public and private subnets.

20

DeVO S www.devopsshack.com
“ / ShQC O office@devopsshack.com

o Asecure web, épp, and database tier.
o A bastion host for secure access to private instances.
o Access:
o Web tier accessible via the public subnet.
o Secure communication between tiers using security groups.

o SSH access to private instances through the bastion host.

21

((- Devo S www.devopsshack.com
¢ 4 Shoc O office@devopsshack.com

Project 3: Automate Kubernetes Cluster Deployment
on AWS Using Terraform

This project focuses on automating the deployment of a Kubernetes cluster on
AWS using Amazon Elastic Kubernetes Service (EKS) with Terraform. It sets up a
managed Kubernetes control plane, worker nodes, and networking
infrastructure to host containerized applications.

Implementation Steps
Step 1: Set Up Terraform
1. Install Terraform: Ensure Terraform is installed on your system.

2. Create a Project Directory: Create a directory, e.g., terraform-eks-cluster,
and navigate into it.

Step 2: Configure the AWS Provider
1. Create a file named main.tf and configure the AWS provider:
provider "aws" {
region = "us-east-1"
}
2. Initialize the project:

terraform init

Step 3: Create a VPC

Set up a Virtual Private Cloud (VPC) with public and private subnets for the EKS
cluster.

1. Create a file named vpc.tf and define the VPC:

resource "aws_vpc" "eks_vpc" {
cidr_block ="10.0.0.0/16"

enable_dns_support = true

22

DeVOES www.devopsshack.com
é:) ShQC @ office@devopsshack.com

enable_dns_hostnames = true
tags = {

Name = "eks-vpc"
}

}
2. Add subnets for the VPC:

resource "aws_subnet" "public_subnet" {
vpc_id =aws_vpc.eks vpc.id
cidr_block ="10.0.1.0/24"
map_public_ip_on_launch = true
availability_zone = "us-east-1a"
tags = {

Name = "eks-public-subnet"

}
}

resource "aws_subnet" "private_subnet" {
vpc_id =aws_vpc.eks vpc.id
cidr_block ="10.0.2.0/24"
availability _zone = "us-east-1b"
tags = {

Name = "eks-private-subnet"

}
}

3. Add aninternet gateway and a route table:

resource "aws_internet_gateway" "eks_igw" {

23

DeVOES www.devopsshack.com
é:) ShQC @ office@devopsshack.com

vpc_id = aws_vpc.eks_vpc.id
tags = {
Name = "eks-igw"
}
}

resource "aws_route_table" "eks_public_route table" {
vpc_id = aws_vpc.eks_vpc.id
route {

cidr_block ="0.0.0.0/0"

gateway_id = aws_internet_gateway.eks_igw.id

}
}

resource "aws_route_table_association" "public_association" {
subnet_id =aws_subnet.public_subnet.id
route_table_id = aws_route_table.eks_ public_route_table.id

}

Step 4: Create an EKS Cluster
1. Create a file named eks.tf and define the EKS cluster:
module "eks" {
source = "terraform-aws-modules/eks/aws"
cluster name ="eks-cluster"

cluster_version ="1.25"

24

((\ DeVOES www.devopsshack.com
- ._) ShOC office@devopsshack.com

subnets = [aws_subnet.public_subnet.id, aws_subnet.private_subnet.id]

vpc_id = aws_vpc.eks_vpc.id

node_groups = {
eks_nodes = {
desired_capacity = 2
max_capacity =3
min_capacity =1

instance_type ="t3.medium"

tags = {

Name = "eks-cluster"

2. This uses a Terraform EKS module to simplify the deployment.

Step 5: Set Up IAM Roles and Policies
Define IAM roles and policies required for EKS.
1. Add IAM roles in iam.tf:

resource "aws_iam_role" "eks_role" {

name = "eks-cluster-role"

assume_role_policy = jsonencode({
Version ="2012-10-17"

Statement = [{

25

((\ DeVOES www.devopsshack.com
-) ShOC office@devopsshack.com

Action = "sts:AssumeRole"
Effect = "Allow"
Principal = {

Service = "eks.amazonaws.com'

}
1]
}

tags = {

Name = "eks-role"

resource "aws_iam_role_policy attachment" "eks_policy" {

policy_arn ="arn:aws:iam::aws:policy/AmazonEKSClusterPolicy'

role =aws_iam_role.eks_role.name

Step 6: Apply the Terraform Configuration
1. Validate the configuration:
terraform validate
2. Preview the infrastructure changes:
terraform plan
3. Apply the changes:
terraform apply

4. Confirm the deployment when prompted.

26

DeVO S www.devopsshack.com
. _) ShQC office@devopsshack.com

Step 7: Configure kubectl
1. Update your kubeconfig file to connect to the EKS cluster:
aws eks --region us-east-1 update-kubeconfig --name eks-cluster
2. Verify the cluster connection:

kubectl get nodes

Step 8: Deploy a Sample Application
1. Create a deployment YAML file, e.g., app-deployment.yaml:
apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx

image: nginx:latest

27

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

ports:
- containerPort: 80
2. Apply the deployment:
kubectl apply -f app-deployment.yaml
3. Expose the application using a service:
apiVersion: vl
kind: Service
metadata:
name: nginx-service
spec:
selector:
app: nginx
ports:
- protocol: TCP
port: 80
targetPort: 80
type: LoadBalancer
4. Apply the service:
kubectl apply -f service.yaml

5. Access the application via the Load Balancer URL.

Outcome
o Infrastructure Components:
o A VPC with public and private subnets.
o An EKS cluster with a managed control plane and worker nodes.

o Networking and security configurations.

28

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

o A sample application deployed on Kubernetes.
o Access:

o The sample application is accessible through the Load Balancer's
DNS name.

29

((- DeVO S www.devopsshack.com
¢ J Shoc O office@devopsshack.com

Project 4: Automate the Deployment of a Complete
CI/CD Pipeline on AWS Using Terraform

This project focuses on building a fully automated CI/CD pipeline on AWS using
Terraform. The pipeline integrates AWS CodePipeline, CodeBuild, CodeCommit,
and S3 for hosting and deploying a static website.

Implementation Steps
Step 1: Set Up Terraform

1. Install Terraform and create a new project directory, e.g., terraform-cicd-
pipeline.

2. Configure the AWS provider in main.tf:
provider "aws" {
region = "us-east-1"

}

Step 2: Create an S3 Bucket for Hosting
1. Add the S3 bucket resource to s3.tf:

resource "aws_s3 bucket" "website bucket" {
bucket = "cicd-website-bucket"

acl ="public-read"

website {

index_document = "index.html"

}

tags = {
Name = "CICD Website Bucket"

30

€ DeVOES www.devopsshack.com
- J ShQC office@devopsshack.com

2. Add a policy to make the bucket content publicly accessible:

resource "aws_s3_bucket_policy" "website_bucket_policy" {

bucket = aws_s3_bucket.website_ bucket.id

policy = jsonencode({
Version ="2012-10-17"
Statement = [{
Effect = "Allow"
Principal = "*"
Action = "s3:GetObject"

Resource = "S{aws_s3_bucket.website_bucket.arn}/*"

1]
N
}

Step 3: Create a CodeCommit Repository
1. Define the CodeCommit repository in codecommit.tf:

resource "aws_codecommit_repository" "source_repo" {
repository_name = "cicd-demo-repo"

description ="CodeCommit repository for CI/CD demo"

tags = {
Name ="CI/CD Demo Repo"
}

31

6‘ DeVOES www.devopsshack.com
- ._) ShQC office@devopsshack.com

2. Initialize a local Git repository and push code to the CodeCommit
repository:

git init

git remote add origin https://git-codecommit.us-east-
1.amazonaws.com/v1/repos/cicd-demo-repo

git add .

git commit -m "Initial commit"

git push -u origin main

Step 4: Create a CodeBuild Project
1. Add the CodeBuild resource to codebuild.tf:
resource "aws_codebuild_project" "build_project" {
name = "cicd-build-project"

service_role =aws_iam_role.codebuild_role.arn

source {

type ="CODECOMMIT"

location = aws_codecommit_repository.source_repo.clone_url_http
}
artifacts {

type = "S3"

location = aws_s3_bucket.website bucket.id
packaging = "ZIP"
}

environment {
compute_type = "BUILD_GENERAL1_SMALL"

image = "aws/codebuild/standard:5.0"

32

DeVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

type ="LINUX_CONTAINER"
environment_variables = [
{
name ="S3 BUCKET"

value = aws_s3 bucket.website_bucket.bucket

}

tags = {
Name = "Build Project"
}
}

Step 5: Set Up IAM Roles
1. Create IAM roles in iam.tf for CodeBuild and CodePipeline:

resource "aws_iam_role" "codebuild_role" {

name = "codebuild-role"

assume_role_policy = jsonencode({
Version ="2012-10-17"
Statement = [{
Effect = "Allow"
Principal = {
Service = "codebuild.amazonaws.com"

}

33

6\ Devo S www.devopsshack.com
.O ShQC @ office@devopsshack.com

Action = "sts:AssumeRole"

1]
)

tags = {

Name = "CodeBuild Role"

resource "aws_iam_role_policy_attachment" "codebuild_policy" {
role =aws_iam_role.codebuild_role.name

policy_arn ="arn:aws:iam::aws:policy/AWSCodeBuildDeveloperAccess"

}

resource "aws_iam_role" "codepipeline_role" {

name = "codepipeline-role"

assume_role_policy = jsonencode({
Version ="2012-10-17"
Statement = [{
Effect = "Allow"
Principal = {
Service = "codepipeline.amazonaws.com"

}

Action = "sts:AssumeRole"

1]

34

DGVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

N

tags = {
Name = "CodePipeline Role"
}
}

resource "aws_iam_role_policy_attachment" "codepipeline_policy" {
role =aws_iam_role.codepipeline_role.name

policy arn ="arn:aws:iam::aws:policy/AWSCodePipelineFullAccess"

}

Step 6: Configure CodePipeline
1. Add CodePipeline in codepipeline.tf:

resource "aws_codepipeline" "pipeline" {
name = "cicd-pipeline"

role_arn = aws_iam_role.codepipeline_role.arn

artifact_store {
location = aws_s3_bucket.website bucket.id
type ="S3"

}

stage {
name = "Source"

action {

35

6\ Devo S www.devopsshack.com
.O ShQC @ office@devopsshack.com

name ="Source"
category = "Source"
owner ="AWS"
provider = "CodeCommit"
version ="1"

output_artifacts = ["source_output"]
configuration = {

RepositoryName =
aws_codecommit_repository.source_repo.repository_name

BranchName ="main"

stage {

name = "Build"

action {
name = "Build"
category = "Build"
owner ="AWS"
provider = "CodeBuild"
version ="1"

input_artifacts =["source_output"]
output_artifacts = ["build_output"]
configuration = {
ProjectName = aws_codebuild_project.build_project.name

}

36

6‘ DeVOES www.devopsshack.com
- _) ShQC office@devopsshack.com

stage {

name = "Deploy"

action {
name = "Deploy"
category = "Deploy"
owner ="AWS"
provider ="S3"
version ="1"

input_artifacts = ["build_output"]
configuration = {
BucketName = aws_s3_bucket.website_bucket.bucket

Extract = "true"

tags = {
Name = "CI/CD Pipeline"
}
}

Step 7: Apply the Terraform Configuration

1. Validate the configuration:

37

((- Devo S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

terraform validate

2. Preview the infrastructure changes:
terraform plan

3. Apply the configuration:
terraform apply

4. Confirm the deployment when prompted.

Step 8: Test the CI/CD Pipeline
1. Push code changes to the CodeCommit repository to trigger the pipeline.
2. Verify the pipeline execution in the AWS Management Console.

3. Access the hosted website via the S3 bucket's public endpoint.

Outcome
 Infrastructure Components:
o An S3 bucket for hosting a static website.
o A CodeCommit repository for source code.
o A CodeBuild project for building the application.
o A CodePipeline to automate CI/CD.
e Access:

o The static website is deployed to the S3 bucket and publicly
accessible.

38

((- Devo S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

Project 5: Automate the Deployment of a Serverless
Application Using AWS Lambda and Terraform

This project focuses on deploying a serverless application using AWS Lambda,
API| Gateway, and DynamoDB. Terraform automates the setup, including
creating a Lambda function, configuring APl Gateway to expose the function,
and integrating DynamoDB as the database layer.

Implementation Steps
Step 1: Set Up Terraform
1. Install Terraform on your system.
2. Create a directory, e.g., terraform-serverless-app, for the project.

3. Initialize Terraform by creating a main.tf file and adding the AWS
provider:

provider "aws" {
region = "us-east-1"
}
4. Run:

terraform init

Step 2: Create an S3 Bucket for Lambda Deployment Package
1. In s3.tf, create an S3 bucket to store the Lambda deployment package:
resource "aws_s3_bucket" "lambda_bucket" {
bucket = "serverless-app-lambda-bucket"

acl ="private"

tags = {

Name = "Lambda Deployment Bucket"

39

DeVOES www.devopsshack.com
. _) ShQC office@devopsshack.com

Step 3: Create a DynamoDB Table
1. Indynamodb.tf, define the DynamoDB table to store application data:

resource "aws_dynamodb_table" "app_table" {
name = "serverless-app-table"
billing_mode ="PAY_PER_REQUEST"
hash_key ="id"

attribute {

name ="id"

type - IISH
}

tags = {

Name = "Serverless App Table"

Step 4: Create a Lambda Function

1. Prepare the Lambda function code in a lambda/ directory. For example,
save the following Python code in lambda/app.py:

import json
import boto3

import os

dynamodb = boto3.resource("dynamodb")

40

DeVOES www.devopsshack.com
é:) ShQC @ office@devopsshack.com

table_name = os.environ["DYNAMODB_TABLE"]

table = dynamodb.Table(table_name)

def lambda_handler(event, context):
if event["httpMethod"] == "POST":
body = json.loads(event["body"])
item = {"id": body["id"], "data": body["data"]}
table.put_item(ltem=item)

return {"statusCode": 200, "body": json.dumps({"message": "ltem added
successfully"})}

elif event["httpMethod"] == "GET":
items = table.scan()["Iltems"]

return {"statusCode": 200, "body": json.dumps(items)}

return {"statusCode": 400, "body": json.dumps({"message": "Unsupported
method"})}

2. Zip the Lambda function code:
cd lambda
zip app.zip app.py

3. Upload the zip file to the S3 bucket and reference it in Terraform. In
lambda.tf:

resource "aws_lambda_function" "app_lambda" {
function_name = "serverless-app-function"

s3 bucket =aws_s3 bucket.lambda_bucket.bucket
s3_key = "app.zip"

runtime ="python3.8"

41

DeVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

handler ="app.lambda_handler"

role =aws_iam_role.lambda_execution_role.arn

environment {
variables = {

DYNAMODB_TABLE = aws_dynamodb_table.app_table.name

}
}

tags = {

Name = "Serverless Lambda Function"

Step 5: Create IAM Roles for Lambda
1. Define IAM roles in iam.tf to grant Lambda permissions:
resource "aws_iam_role" "lambda_execution_role" {

name = "lambda-execution-role"

assume_role_policy = jsonencode({
Version ="2012-10-17"
Statement = [{
Effect = "Allow"
Principal = {
Service = "lambda.amazonaws.com”

}

42

DeVOES www.devopsshack.com
éj) ShQC @ office@devopsshack.com

Action = "sts:AssumeRole"

1]
)

tags = {

Name = "Lambda Execution Role"

resource "aws_iam_role_policy_attachment" "lambda_dynamodb_policy" {
role =aws_iam_role.lambda_execution_role.name

policy_arn = "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess"

}

resource "aws_iam_role_policy_attachment" "lambda_logging_policy" {
role =aws_iam_role.lambda_execution_role.name

policy_arn ="arn:aws:iam::aws:policy/service-
role/AWSLambdaBasicExecutionRole"

}

Step 6: Configure APl Gateway

1. Create an APl Gateway to expose the Lambda function via HTTP. Add this
to api_gateway.tf:

resource "aws_api_gateway rest_api" "app_api" {
name = "serverless-app-api"

description = "AP| Gateway for the serverless app"

}

43

6\ Devo S www.devopsshack.com
.O ShQC @ office@devopsshack.com

resource "aws_api_gateway resource" "app_resource" {
rest_api_id = aws_api_gateway_rest_api.app_api.id

parent_id =aws_api_gateway_rest_api.app_api.root_resource_id
path_part ="items"

}

resource "aws_api_gateway method" "app_method" {
rest_api_id =aws_api_gateway rest_api.app_api.id
resource_id =aws_api_gateway_resource.app_resource.id
http_method ="ANY"

authorization = "NONE"
}

resource "aws_api_gateway_integration" "lambda_integration" {
rest_api_id = aws_api_gateway_rest_api.app_api.id
resource_id = aws_api_gateway_resource.app_resource.id
http_method = aws_api_gateway_method.app_method.http_method
type = "AWS_PROXY"
integration_http_method = "POST"

uri =aws_lambda_function.app_lambda.invoke_arn

resource "aws_lambda_permission" "api_gateway_permission" {
statement_id ="AllowAPlGatewaylnvoke"

action = "lambda:InvokeFunction"

44

DeVO ES www.devopsshack.com
. _) ShQC office@devopsshack.com

function_name = aws_lambda_function.app_lambda.function_name
principal = "apigateway.amazonaws.com"
source_arn ="S{aws_api_gateway rest_api.app_api.execution_arn}/*/*"

}

Step 7: Apply the Terraform Configuration
1. Initialize Terraform:
terraform init
2. Validate the configuration:
terraform validate
3. Plan the deployment:
terraform plan
4. Deploy the infrastructure:
terraform apply

5. Confirm when prompted.

Step 8: Test the Application
1. Note the APl Gateway URL from the output of terraform apply.
2. Use curl or a tool like Postman to test the API:
o Add an item (POST request):

curl -X POST -H "Content-Type: application/json" -d '{"id": "1", "data": "Hello,
world!"} <APl_URL>/items

o Retrieve all items (GET request):

curl -X GET <API_URL>/items

Outcome

« Infrastructure Components:

45

DeVO ES www.devopsshack.com
. / ShQC office@devopsshack.com

o

o

A DynamoDB table for data storage.

A Lambda function to handle HTTP requests and interact with
DynamoDB.

An API Gateway to expose the Lambda function as a RESTful API.

An S3 bucket to store the Lambda deployment package.

+ Access:

o

The application is accessible via the APl Gateway URL.

For more DevOps projects -> CLICK HERE

46

http://www.devopsshack.com/

(‘(- Devo S www.devopsshack.com
¢ '} Shoc O office@devopsshack.com

Conclusion

Terraform has redefined how we approach infrastructure management by
enabling a declarative and automated way of provisioning cloud resources. Its
ability to support multi-cloud environments, simplify complex setups, and
maintain consistency across deployments makes it an indispensable tool for
developers, DevOps engineers, and cloud architects.

In this guide, we explored five practical and impactful projects to master
Terraform:

=

Deploying a high-availability web application.
Building a secure multi-tier architecture.

Automating Kubernetes cluster provisioning.

H wo N

Creating a complete CI/CD pipeline.

5. Implementing a serverless application with AWS Lambda and
DynamoDB.

These projects covered a wide range of use cases, showcasing how Terraform
can be applied to automate infrastructure, enhance scalability, and simplify
maintenance. Each project was designed to help you gain hands-on experience
with real-world scenarios, providing you with the knowledge to confidently
work on cloud-based infrastructures.

By following the step-by-step implementation of these projects, you’ve not
only learned how to build different components but also gained insights into
Terraform best practices, such as modular design, role-based access, and
secure resource management. These skills are essential for scaling applications,
reducing downtime, and ensuring that your infrastructure can adapt to
changing business needs.

Whether you're starting your journey with Terraform or looking to refine your
existing skills, these projects offer a solid foundation for mastering
infrastructure as code. Terraform’s flexibility and powerful capabilities make it a
key player in the DevOps ecosystem, empowering organizations to move faster
and more efficiently in today’s cloud-first world.

As you continue to explore Terraform, remember that the possibilities are
endless. You can build on these projects, customize them for your unique

47

((- DeVO S www.devopsshack.com
¢ J ShQC O office@devopsshack.com

requirements, and expand your expertise to include more advanced topics like
state management, CI/CD pipelines for Terraform itself, and integrations with
third-party tools.

With Terraform in your toolkit, you’re well-equipped to tackle the challenges of
modern infrastructure management. Keep experimenting, learning, and
building, and you’ll soon become a pro at automating infrastructure with
Terraform!

48

